Simplifying fragmentation patterns of multiply charged peptides by N-terminal derivatization and electron transfer collision activated dissociation.

نویسندگان

  • James A Madsen
  • Jennifer S Brodbelt
چکیده

N-terminal peptide derivatization strategies used in conjunction with tandem mass spectrometry to yield simplified fragmentation patterns have shown limited success for the de novo sequencing of multiply charged peptides, including those predominantly formed in LC-ESI-MS experiments. Significant proton mobilization occurs for multiply charged peptides upon collisional activation, resulting in the formation of both N-terminal and C-terminal product ions rather than an exclusive series of C-terminal ions preferred for de novo sequencing algorithms. To circumvent this problem, multiply charged, N-terminally derivatized peptides were subjected to electron transfer reactions with fluoranthene anions to produce singly charged, radical species. Upon subsequent "soft" collision induced dissociation (CID), highly abundant z-type ions were formed nearly exclusively, which yielded simplified fragmentation patterns amenable to de novo sequencing methods. Furthermore, the derivatized peptides retained labile phosphoric acid moieties, and the enhanced set of z ions were also observed for peptides not possessing basic C-terminal residues, a type of peptide that poses more challenges to traditional simplification methods based on collision activated dissociation. This improved LC-MS(n) strategy was demonstrated for a variety of multiply charged model peptides and a tryptic digest of myoglobin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation.

Positive ion mode collision-activated dissociation tandem mass spectrometry (CAD MS/MS) of O-sulfopeptides precludes determination of sulfonated sites due to facile proton-driven loss of the highly labile sulfonate groups. A previously proposed method for localizing peptide and protein O-sulfonation involves derivatization of nonsulfonated tyrosines followed by positive ion CAD MS/MS of the cor...

متن کامل

Surface-induced dissociation of multiply protonated peptides.

We report here surface-induced dissociation spectra of three multiply charged peptides: doubly protonated angiotensin I, doubly protonated renin substrate, and triply protonated melittin. For comparison, the collision-activated dissociation spectra of renin substrate and melittin are also presented. The spectra show that surface-induced dissociation provides structural information on multiply c...

متن کامل

Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.

Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describ...

متن کامل

De novo sequencing of peptides by MS/MS.

The current status of de novo sequencing of peptides by MS/MS is reviewed with focus on collision cell MS/MS spectra. The relation between peptide structure and observed fragment ion series is discussed and the exhaustive extraction of sequence information from CID spectra of protonated peptide ions is described. The partial redundancy of the extracted sequence information and a high mass accur...

متن کامل

Electron capture and collisionally activated dissociation mass spectrometry of doubly charged hyperbranched polyesteramides.

Electron capture dissociation (ECD) of doubly protonated hyperbranched polyesteramide oligomers (1100-1900 Da) was examined and compared with the structural information obtained by low energy collisionally activated dissociation (CAD). Both the ester and amide bonds of the protonated species were cleaved easily upon ECD with the formation of odd electron (OE(.+)) or even electron (EE(+)) fragme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 81 9  شماره 

صفحات  -

تاریخ انتشار 2009